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Abstract: Understanding and promoting subjective wellbeing (SWB) has been the topic of 

increasing research, due in part to its potential contributions to health and productivity. To date, 

the conceptualization of SWB has been grounded within social psychology and largely focused on 

self-report measures. In this paper, we explore the potentially complementary tools and theoretical 

perspectives offered by computational neuroscience, with a focus on the active inference (AI) 

framework. This framework is motivated by the fact that the brain does not have direct access to 

the world; to select actions, it must instead infer the most likely external causes of the sensory input 

it receives from both the body and the external world. Because sensory input is always consistent 

with multiple interpretations, the brain’s internal model must use background knowledge, in the 

form of prior expectations, to make a “best guess” about the situation it is in and how it will change 

by taking one action or another. This best guess arises by minimizing an error signal representing 

the deviation between predicted and observed sensations given a chosen action—quantified 

mathematically by a variable called free energy (FE). Crucially, recent proposals have illustrated 

how emotional experience may emerge within AI as a natural consequence of the brain keeping 

track of the success of its model in selecting actions to minimize FE. In this paper, we draw on the 

concepts and mathematics in AI to highlight how different computational strategies can be used 

to minimize FE—some more successfully than others. This affords a characterization of how 

diverse individuals may adopt unique strategies for achieving high SWB. It also highlights novel 

ways in which SWB could be effectively improved. These considerations lead us to propose a novel 

computational framework for understanding SWB. We highlight several parameters in these 

models that could explain individual and cultural differences in SWB, and how they might inspire 

novel interventions. We conclude by proposing a line of future empirical research based on 

computational modelling that could complement current approaches to the study of wellbeing and 

its improvement. 

 

Keywords: subjective wellbeing, active inference, computational neuroscience, computational 

psychiatry, predictive coding, emotion 

 

1. Introduction 

Understanding and improving subjective wellbeing (SWB) is important in promoting resilience, 

social support, physical health and longevity, work performance, and broader contributions to 

society (De Neve et al., 2013; Diener et al., 2017). Previous research has shown that individuals 

reporting higher SWB tend to be healthier and live longer, due in part to more frequent 
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engagement in health behaviors (Danner et al., 2001; Diener & Chan, 2011; Lyubomirsky et al., 

2005; Steptoe & Wardle, 2011). They also have more successful marriages (Lucas et al., 2003; 

Luhmann et al., 2013), more friendships (Moore et al., 2018), and both greater reported job 

satisfaction and better job performance (Borman et al., 2001; Tenney et al., 2016). In addition, they 

return to healthy emotional states more quickly after negative life events (Fredrickson et al., 2003). 

Although much of the research in this area is correlational, there are also established mechanisms 

through which emotional health can promote physical health (Slavich & Irwin, 2014), and 

arguments can be made that causal influences between each of the aforementioned measures are 

synergistic and bidirectional (Diener et al., 2018). 

To date, the primary measures used to study SWB—and which have led to the important 

findings discussed above—are based on self-report (Diener et al., 1985; Diener et al., 2018; Diener 

et al., 2010; Pavot et al., 1991; Sandvik et al., 1993; Weziak-Bialowolska et al., 2021). In a few 

studies, this approach has been supplemented with other methods, such as third-party reports 

from friends, family, and co-workers, with results supporting convergent validity (Pavot et al., 

1991; Sandvik et al., 1993; Schimmack & Oishi, 2005; Schneider & Schimmack, 2009); for other 

work supporting combinations of self-report and quantitative measures (e.g., the Human 

Development Index), see (Anand & Sen, 1992; Sen, 1985). In a small number of studies, report-

based SWB measures have also been associated with objective measures such as smiling intensity 

(Seder & Oishi, 2012), the emotional valence of word choice (Schwartz et al., 2013), and peripheral 

physiological measures of stress and health (Steptoe et al., 2005). There have also been efforts to 

improve SWB through interventions focused on exercise, mindfulness, and/or metacognitive 

training (reviewed in (Varshney & Barbey, 2021)). However, conventional descriptive approaches 

within SWB research have been limited in their ability to provide insights beyond associations 

between variables of interest.  As such, the mechanistic and biobehavioral basis of SWB remains 

poorly characterized and our understanding could be greatly advanced by applying 

complementary approaches in neighboring fields.  

One promising set of complementary approaches comes from computational neuroscience, 

and its clinically-focused sister discipline of computational psychiatry. Various lines of work in 

these fields have focused on understanding the mechanistic basis of individual differences in both 

pathological and sub-clinical levels of emotional symptoms—such as depression/anxiety and the 

way they interfere with overall life functioning—with clear connections to differences in SWB 

(Friston et al., 2014; Huys et al., 2016; Montague et al., 2012).  Computational approaches focus 

on mathematical models of brain processes to explain complex patterns of learning/behavior and 

may therefore offer a complementary approach for improving understanding of the 

neurocognitive mechanisms underlying previously observed differences in SWB based on self-

report.  

As we will describe further below, these approaches may offer at least two specific 

advantages to the field of SWB research. One is that they facilitate construction of general theories 

with broad explanatory power. For example, constructivist and descriptive perspectives have 

highlighted how conceptualizations of emotion and wellbeing can differ based on cultural and 

historical context (Barrett, 2017; Lomas et al., 2021). However, once such differences are identified, 

conventional descriptive approaches in SWB research may have difficulty explaining why these 

differences exist. In contrast, if knowledge of the more general neurocomputational processes 



Subjective wellbeing and active inference 

Smith et al. 

 

      www.internationaljournalofwellbeing.org                   104 

underlying cognition and behavior can be incorporated, the origin of such differences may be 

accounted for within a single model (e.g., based on specific learning mechanisms or inference 

processes). A second advantage is that mathematical models of cognition offer an additional type 

of predictive ability. This is because they allow for quantitative simulation of non-trivial 

counterfactual changes in cognition/behavior under different circumstances. For example, one 

could simulate (and therefore predict) how someone would act if they were to have one set of 

experiences vs. another or if they were to have one set of beliefs vs. another. The predictions that 

emerge from such simulations can then be evaluated empirically. In turn, experimental results 

can refine available models before further rounds of simulation, prediction, and testing—forming 

in an iterative process of data-driven improvement of current theories. Importantly, this 

simulation approach can also be applied to hypothetical interventions. Namely, mathematical 

models can be used to simulate the outcomes of a proposed intervention and then studies can test 

whether the predicted outcomes occur. 

Motivated by these possible advantages, in this paper we will first provide a brief 

introduction to computational approaches for wellbeing researchers and social psychologists 

who do not have background in this area. We describe the mathematics at a conceptual level and 

provide thorough explanation of any equations shown. We then discuss how computational 

approaches might yield novel lines of research on SWB. While we will touch upon multiple 

computational models, we focus primarily on the active inference framework and the additional 

resources it may offer, including: 1) novel theoretical conceptualizations of SWB, and 2) 

additional analytic tools that could be used to advance empirical research on the mechanisms and 

determinants of SWB (and behaviors that promote SWB). As we describe in more detail below, 

this approach affords behavioral measures of individual differences in a range of 

neurocomputational processes, including those underlying flexibility in the future-directedness 

of planning, motivation to seek out information, beliefs about environmental predictability, the 

influence of expectation on perception, and the sophistication with which individuals understand 

emotions, among others. Gathering such information will allow assessment of the mechanisms 

contributing to differences in SWB and could inspire novel interventions for improving SWB by 

targeting those mechanisms. 

 

2. Computational approaches and conceptual links to wellbeing 

2.1 Reinforcement learning 

One widely established branch of computational neuroscience is reinforcement learning (RL). 

Within RL, it is assumed that individuals make decisions to maximize expected reward. One way 

they can do so is by maintaining an internal model of the world (so-called “model-based” RL), 

and using that model to plan the sequence of actions that would maximize cumulative reward 

(this type of internal model can also be used to facilitate learning through internal simulation; 

(Sutton & Barto, 1998)). Because model-based RL is computationally expensive (and in some cases 

intractable), many applications have instead focused on “model-free” RL, where individuals 

learn by trial-and-error without making explicit predictions about the future situations that will 
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arise1. Instead, they simply learn an expected reward value for each possible action in a given 

situation and then choose the action with the highest expected value (often with a certain amount 

of randomness built in). Learning in these models is based on so-called “reward prediction 

errors” (RPEs). Briefly, when the expected reward following an action does not match observed 

reward, this mismatch (prediction error) updates the expected reward value of that action 

(increasing it if better than expected, decreasing it if worse than expected). We can calculate this 

prediction error as follows: 

 
𝑅𝑃𝐸 = 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑅𝑒𝑤𝑎𝑟𝑑 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑅𝑒𝑤𝑎𝑟𝑑 

 

The expected reward of the action that led to the RPE is then updated based on the following rule: 

 
𝑁𝑒𝑤 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑅𝑒𝑤𝑎𝑟𝑑 = 𝑂𝑙𝑑 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑅𝑒𝑤𝑎𝑟𝑑 + (𝑅𝑃𝐸 × 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑅𝑎𝑡𝑒) 

 

Here the learning rate is a value that controls how strong the change in expected reward is after 

each RPE. In tasks expected to have stable reward probabilities, learning rates should be low 

(since unexpected rewards may just be low-probability events). In contrast, if reward 

probabilities are expected to change every so often (i.e., the environment is “volatile”), learning 

rate should be high, since unexpected rewards are more likely to indicate that the underlying 

reward probabilities have changed. If one can quantify an individual’s learning rate, this may 

therefore provide information about how stable/predictable they expect the world to be (e.g., a 

low learning rate would entail the belief that previously learned action-outcome probabilities are 

unlikely to change). 

To date, some work within the RL framework has linked emotional states and moods with 

patterns of recent rewards and RPEs (Blain & Rutledge, 2020; Eldar & Niv, 2015; Eldar et al., 2018; 

Eldar et al., 2016; Mason et al., 2017; Rutledge et al., 2014, 2015; Vanhasbroeck et al., 2021). For 

example, greater momentary happiness during reward learning tasks has been associated with 

stronger positive RPEs in recent trials (Rutledge et al., 2014; Vanhasbroeck et al., 2021). This 

relation to momentary happiness also appears to be related to how surprising a reward is, rather 

than the magnitude of reward per se; (Blain & Rutledge, 2020)). That is, individuals report greater 

momentary increases in happiness if they are more surprised that a reward was received. 

Individuals also report greater momentary happiness in probabilistic learning tasks with more 

stable/predictable reward probabilities (i.e., those with lower volatility), whereas tasks in which 

probabilities change unpredictably are instead associated with greater self-reported negative 

emotion and stress (Blain & Rutledge, 2020; de Berker et al., 2016). This line of work has therefore 

provided important insights. However, these studies have focused primarily on momentary 

happiness, as opposed to the computational basis of general life satisfaction or overall life 

functioning. Thus, more research is needed to understand the relationship between these 

computational reward learning processes and established SWB measures. 

 

 
1 There are also several hybrid or intermediate algorithms that have been proposed, such as two-system architectures (where model-

based and model-free systems cooperate/compete) and successor representation algorithms, among others (e.g., appealing to the 

role of long-term memory).  
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2.2 Active inference 

Another conceptually rich computational framework, which we focus on here, is active inference 

(AI; see Figure 1 below). This framework describes how individuals select sequences of actions 

(called “policies”, denoted by the variable 𝜋) based on their expected sensory consequences (often 

called observations or outcomes, denoted by the variable 𝑜). These observations can include 

rewards as well as other sensory inputs capable of reducing uncertainty about the underlying 

states of the world that must be inferred (denoted by the variable 𝑠) (Smith, Friston, et al., 2022). 

For example, hearing a barking sound (observation) may allow one to infer that a dog is most 

likely nearby (state), although one cannot see the dog directly. Unlike model-free RL, this type of 

decision process requires the brain to maintain an internal model of the world that can simulate 

predicted patterns of observations under different possible actions. It can then select the actions 

expected to generate the most preferred/informative outcomes. Crucially, behavior will quickly 

become maladaptive if predictions become inaccurate. Therefore, the brain’s internal model must 

also be continually updated and revised in light of new sensory input. The AI framework suggests 

that this is accomplished by finding an updated set of beliefs after each observation that 

minimizes prediction error. Unlike RL, however, this is not an RPE. Instead, this more general 

prediction error can reflect a deviation between any predicted and observed sensory input. 

Importantly, however, there are typically multiple sets of new beliefs that could minimize 

prediction error, which means some further criterion is also needed to select among those 

possibilities. This criterion corresponds to parsimony; namely, beliefs should minimize 

prediction error while also changing as little as possible. Put another way, the brain should identify 

the simplest possible (or least “complex”) change in belief that is necessary.  

To capture this, AI formally models the brain as seeking to minimize a quantity called 

variational free energy (VFE), which represents a trade-off between minimizing prediction error 

and minimizing the complexity of change in belief. Without introducing the detailed 

mathematics, we can represent this as: 

 
𝑉𝐹𝐸 = 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 + 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 

 

Importantly, previous literature has suggested that negative emotion may be a consequence of a 

chronic failure to successfully minimize VFE (or simply prediction error; e.g., see (Barrett et al., 

2016; Joffily & Coricelli, 2013; Stephan et al., 2016)). This suggests that successful minimization of 

this quantity could also correspond to high SWB. However, this has not been empirically tested 

(although we discuss studies that have tested related hypotheses below). 

While VFE relates beliefs to current observations, selecting actions requires the prediction of 

future observations (“what will I observe if I do this or that?”). This means the brain must evaluate 

expected free energy (EFE; denoted by variable 𝐆 in Figure 1). Conceptually, minimizing EFE can 

be described as selecting actions expected to maximize both reward and information gain. This 

can be represented as: 

 
𝐸𝐹𝐸 = −𝐸𝑝𝑖𝑠𝑡𝑒𝑚𝑖𝑐 𝑉𝑎𝑙𝑢𝑒 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑅𝑒𝑤𝑎𝑟𝑑 
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Figure 1. Graphical depiction of active inference models. 

 
Notes. Arrows denote asymmetric dependencies (e.g., the expected observation, 𝑜 , depends on the 

underlying state of the world, 𝑠). The general notation 𝑝(𝑥)  indicates the known probability for each 

possible value of some variable 𝑥, whereas 𝑞(𝑥) denotes an approximation or “best guess” about those 

probabilities (also referred to as a “posterior” belief, because this guess is updated after one makes a new 

observation). The notation 𝑝(𝑥|𝑦) denotes the probability of each possible value of some variable 𝑥 after 

one has learned the value of some other variable 𝑦. See text for further explanation. As illustrated here, the 

underlying states of the world change over time, and the way they change can depend on one’s chosen 

sequence of actions (𝜋). Actions are chosen based on a combination of habits, the expected free energy, and 

beliefs about the reliability or “precision” of expected free energy (described further in the text). After each 

new observation, an individual can use this model to come up with a best guess about how the state of the 

world has changed (based on minimizing variational free energy or prediction error) and then select actions 

expected to maximize both reward and information gain (based on minimizing expected free energy). For 

a detailed walkthrough of the mathematics, see (Smith, Friston, et al., 2022). Minimizing both types of free 

energy can be conceptualized as maximizing SWB, and the success with which one does so will depend on 

the values of various parameters in the model. This is described further in the main text. 

 

Here, the “epistemic value” term refers to how much one’s uncertainty would be reduced by an 

expected observation (i.e., how much it would increase one’s confidence in the underlying state 

of the world). The consequence of this equation is that individuals who do not know how to reach 

their goals will first explore their environment to gain more information. Once uncertainty is 

resolved, actions will then become reward-seeking (i.e., seeking the observations with the highest 
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values encoded in the preference parameters within 𝐂 in Figure 1). Active inference models can 

also include other elements, such as learning rates, habits, and volatility beliefs, among others 

(for a summary of relationships between AI and RL, see Table 1 below). However, their main 

distinguishing features from traditional  RL approaches are: 1) prediction error (VFE) 

minimization as the basis of perception (traditional RL models do not include perception), and 2) 

information-seeking during action selection (although some more recent RL models have 

incorporated additional elements to drive strategic exploration; e.g., see (Gershman, 2018)). For a 

formal graphical depiction of active inference and some additional technical details, see Figure 1 

and the associated legend. For a detailed walkthrough of the mathematics, see (Smith, Friston, et 

al., 2022). 

Aside from the model structure depicted in Figure 1, there are also related model 

architectures based on free energy minimization (i.e., minimization of prediction errors weighted 

by their estimated reliability), with a primary example being the Hierarchical Gaussian Filter 

(HGF; (Mathys et al., 2014)). One advantage of the HGF is that it explicitly models volatility 

estimation (which then continuously updates learning rates after each new observation). In 

contrast, the simplest version of the AI architecture depicted in Figure 1 only includes static 

learning rates. However, there are extensions to standard AI architectures that can perform 

explicit volatility estimation as well (Sales et al., 2019). 

 

3. Potential relationships between free energy minimization and subjective wellbeing 

There are fairly straightforward theoretical connections between EFE and SWB. If an individual 

continually fails to attain preferred observations (i.e., if EFE estimates continually fail to promote 

actions that achieve those observations), this would suggest they have a poor model of the world 

and are unable to improve it—perhaps resulting in feelings of helplessness and lack of control 

associated with low SWB. Previous theoretical work has also shown how the brain may keep 

track of the reliability/precision of its own EFE estimates (i.e., the parameter 𝜸 in Figure 1). In this 

case, a belief that EFE estimates are unreliable would be expected to promote negative affect 

(Hesp et al., 2021; Hesp et al., 2020)—because it entails an unsuccessful model of the world (i.e., 

a model that is not reliable in its ability to achieve preferred outcomes). Conversely, a consistent 

belief that one’s model is successful at guiding action toward achieving one’s goals could 

contribute to higher SWB. Two empirical studies to date have observed the expected correlation 

between negative affect (self-reported anxiety/uncertainty) and EFE reliability/precision 

estimates (using a model of participant behavior during an approach-avoidance conflict task 

(Smith, Kirlic, Stewart, Touthang, Kuplicki, Khalsa, et al., 2021; Smith, Kirlic, Stewart, Touthang, 

Kuplicki, McDermott, et al., 2021)), and three other studies using active inference models have 

linked related measures of precision to depression, anxiety, and/or substance use disorder 

severity (Smith, Kuplicki, Feinstein, et al., 2020; Smith, Schwartenbeck, et al., 2020; Smith, Taylor, 

Stewart, et al., 2022). One study has also identified neural correlates of EFE estimates using 

functional neuroimaging (Schwartenbeck et al., 2015). However, possible links to measures of 

SWB have not been examined. 
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Table 1. Computational frameworks that could be used to study subjective wellbeing. 
 

Reinforcement learning Active inference 

Explanatory targets Cognitive and neural mechanisms 

of reward learning and reward-

based decision-making 

Cognitive and neural mechanisms 

of perception, learning, and 

decision-making 

Guiding principle Reward Maximization 

Learning: Updating beliefs about 

reward probabilities 

 

Decision-making: Maximizing 

cumulative rewards 

Free energy principle 

Inferring beliefs about states of the 

world that minimize variational 

free energy (i.e., minimize 

complexity + prediction error) 

 

Learning: Inferring model 

parameters (e.g., probabilities of 

observations under different states) 

that improve the accuracy of model 

predictions (also based on 

variational free energy 

minimization). 

 

Decision-Making: Making choices 

that minimize expected free energy 

(i.e., which maximizes information 

gain + reward) 

Example parameters Basic models: State-space structure 

(granularity), learning rate, reward 

probabilities, reward sensitivity 

(level of randomness in choice) 

 

Extended models: Planning horizon, 

information bonus terms (driving 

information seeking) 

Precision of: prior beliefs over 

states, state-observation mappings 

(sensory precision), preferences, 

expected free energy, and habits 

 

State-space structure (granularity), 

probabilities of observations given 

states, learning and forgetting 

rates; beliefs about environmental 

volatility; planning horizon 

Hypotheses about the 

potential basis of 

subjective wellbeing 

Greater momentary subjective 

wellbeing corresponds to patterns 

of repeatedly unexpected reward 

(i.e., better-than-expected 

outcomes) 

Successful minimization of 

variational and expected free 

energy; high confidence in one’s 

internal model of the world and its 

ability to adaptively guide action 

 

A match between one’s internal 

model (i.e., model structure and 

parameter values) and the true 

statistics of the environment 
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Crucially, difficulties minimizing EFE can occur with respect to both internal bodily states 

(interoception) as well as external circumstances. For example, Stephan et al. (2016) have 

proposed that depressive symptoms develop due to a chronic failure to minimize interoceptive 

prediction error—associated with reduced confidence in the ability to successfully regulate the 

body and maintain preferred interoceptive observations (reduced “allostatic self-efficacy”). This 

also relates to interesting recent modelling work aiming to capture the computational basis of 

stress habituation—a phenomenon in which some individuals show reduced physiological 

responses to repeated presentation of the same stressor (Hartwig et al., 2022). This modelling 

work proposes that stress habituation can be captured as a reduction in the strength of the 

expected reward component of EFE (technically, a reduced precision of the distribution encoding 

preferred outcomes). In brief, when no course of action can be found to reduce EFE, a last resort 

option is to reduce the reward-seeking motivation itself. This means that the individual ceases to 

experience aversive stress responses (i.e., EFE is reduced), but at the cost of no longer expecting 

to achieve outcomes consistent with high SWB (e.g., remaining in unhealthy relationships or low 

socio-economic status environments, etc.). This computational model also introduces a parameter 

to account for the fact that some individuals show stress habituation and others do not. This 

highlights how there are trade-offs and individual differences in the way people may go about 

reducing EFE, not all of which are equally likely to promote high SWB. 

While the theoretical relationship between SWB and EFE is fairly straightforward, possible 

links to VFE are more complex. Intuitively, one might simply equate higher SWB with lower 

levels of VFE (Joffily & Coricelli, 2013). At a biological level, this idea can be motivated by the fact 

that VFE minimization provides a generic means of describing successful survival and 

environmental adaptation (Friston, 2019; Kirchhoff et al., 2018). The mathematics behind this 

idea—referred to as the “free energy principle”—are beyond the scope of the present paper, but 

the key premise is that observations consistent with an organism’s survival must be those 

expected to have the highest probability in that organism’s model (e.g., if healthy levels of 

hydration were not observed with high probability, an organism would not survive). It follows 

that there will be large prediction errors (i.e., greater VFE) when survival-consistent outcomes are 

not observed. This formulation therefore entails that successful organisms act to minimize VFE, 

where this success at maintaining survival-consistent outcomes would be expected to promote 

higher SWB. 

However, this is likely oversimplified when considering the study of human SWB. One basic 

reason for this is that minimizing VFE is also accomplished by arriving at new beliefs that 

minimize prediction error (in the simplest way possible)—and sometimes the most accurate 

beliefs can promote low SWB (e.g., believing that one is worthless may best minimize prediction 

error in some circumstances). Another reason is that even very simple organisms can be described 

as acting to minimize VFE as a means of survival, while there is substantially greater subjectivity 

and complexity associated with self-reported SWB in humans. This is because self-reported SWB 

depends on abstract beliefs about oneself, which requires an internal model of the world that can 

support this type of advanced cognition (Hesp et al., 2021; Hesp et al., 2020). Crucially, this can 

include abstract expectations about the conceptual requirements of SWB that go beyond, or even 

work against, biological fitness (e.g., some individuals may believe they need to be rich to be 

happy, while others do not; or some individuals may value self-sacrifice over personal safety, 
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while others do not). Another complexity is that there are different concepts of wellbeing (e.g., 

hedonic vs. eudaimonic; (Ryan & Deci, 2001)). While momentary reductions in VFE might 

plausibly influence short-term hedonic wellbeing in some circumstances (e.g., when a return to 

homeostasis leads to positive emotion), eudaimonic wellbeing involves learned normative beliefs 

about what the requirements are for living (or having lived) a meaningful life that can counteract 

biological fitness (e.g., preferring states of “suffering in support of a meaningful cause” over states 

of “meaningless pleasure”). Given learned preferences for outcomes consistent with eudaimonic 

wellbeing, individuals will plausibly minimize EFE to realize them, but VFE could be minimized 

by inferring either high or low levels of eudaimonic wellbeing (i.e., depending on which inference 

best minimizes prediction error with respect to current observations). The role of inference 

through VFE minimization—whether those inferences promote eudaimonic wellbeing or not—is 

also exemplified by related work that has characterized determinants of feeling meaning in life 

(reviewed in (Kim et al., 2022)). This work suggests that several types of beliefs contribute to 

feelings of meaning, including: 1) that the various aspects of one’s life are consistent and cohesive 

with one another; 2) that one’s life has a purpose (it is working toward valued goals); and 3) that 

one’s existence matters in the sense of having value, importance, and significance in the world. 

Meaning in life is also greater in those who show an intrinsic appreciation for various experiences 

(e.g., music, nature, interactions with family/friends; (Kim et al., 2022)). In active inference, the 

presence or absence of each of these beliefs would in part reflect inferences based on current 

observations—that is, the inferences that minimize VFE. However, some of these beliefs clearly 

also depend on expected future states and observations, which means EFE would also play a role 

similar to that described above. Levels of eudaimonic wellbeing will therefore reflect a complex 

mixture of VFE and EFE (with respect to beliefs about the present and future, respectively). 

These considerations illustrate why the potential relationship between VFE minimization and 

SWB is not as straightforward as is the case with EFE. While VFE can be understood to track basic 

biological fitness, this is neither necessary nor sufficient for an individual to report high SWB. 

Rather, both hedonic and eudaimonic SWB are learned concepts used to evaluate one’s 

experience, and self-reported SWB depends on how these learned concepts are encoded within 

the structure of an individual’s internal model (e.g., an individual could potentially learn to 

associate low levels of hedonic SWB with high levels of eudaimonic SWB). The theoretical 

complexity here can also be highlighted by noting again how a model with beliefs about SWB 

will require hierarchical structure, which can allow VFE to be high at some levels and low at 

others. For example, consider an individual who values the idea of “hard work” and comes home 

feeling exhausted after a long day at their job. This feeling of exhaustion may reflect high VFE at 

a biological level (i.e., low metabolic resources); yet, that same feeling may lead to an elevated 

sense of self-worth (i.e., being exhausted provides evidence that one is a hard worker). This 

suggests that VFE minimization at some levels of processing may be more plausible correlates of 

SWB than others. However, despite these theoretical complexities, we will see below that—in the 

context of practical applications of active inference to SWB research—there may be several 

promising research directions to pursue. 
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4. Computational phenotypes: Multiple strategies for minimizing free energy 

Based on the theoretical foundations discussed above, this section expands on the active inference 

framework and provides concrete examples of how SWB research could be advanced by applying 

computational concepts and approaches. While we focus on active inference due to the richer set 

of constructs it allows us to draw from, we note that—because minimizing EFE includes a reward 

maximization component with some mathematical similarities to RL (Da Costa et al., 2020)—

some points made below may also apply to elements of that framework. One main message of 

this section is that there are likely multiple computational strategies that can successfully 

maintain high SWB. These strategies correspond to different internal model structures or 

“computational phenotypes” (Schwartenbeck & Friston, 2016), which can vary in the degree to 

which they adaptively capture the structure of the local environment (especially the local 

sociocultural environment). Computational phenotypes are defined in terms of the values of 

model parameters that best describe an individual’s behavior. Below we will describe six different 

example model parameters, how they have been used in existing studies employing active 

inference models, and how they may explain differences in SWB. 

 

4.1 Precision of prior beliefs over states 

In a given context, an internal model—technically referred to as a “generative model” (because it 

generates predictions)—will include prior beliefs about what will be perceived (both dependent 

and independent of one’s actions; encoded in parameters within 𝐃 and 𝐁 in Figure 1). If an 

individual is highly confident in their prior beliefs (if those beliefs are very “precise”), they will 

lead to a strong interpretive bias favoring expectations. Depending on the content domain, such 

prior beliefs could either promote or fail to promote SWB. For example, individuals with a precise 

prior belief that others tend to be friendly and supportive in social contexts may be more likely 

to interpret social signals in a positive manner—likely leading to actions that garner additional 

social support and promote greater SWB. Pessimistic prior biases, as in emotional disorders, can 

instead bias perception toward interpretations of threat and social rejection—generating chronic 

negative affect (Smith, Alkozei, et al., 2018). However, it is important to consider that, while an 

optimistic social interpretation bias could be helpful to a certain degree, it is also crucial that these 

expectations do not deviate too far from the true statistics of the environment. For example, a 

prior expectation that individuals are friendly could promote poor and unsafe choices in socially 

hostile environments and thus generate circumstances hindering SWB. Thus, there is not one 

optimal prior belief. It depends on the content domain and on a match with the environment. 

Model accuracy can be optimized so long as individuals also believe the sensory signals from the 

environment are reliable. If sensory signals are believed to be unreliable—referred to as having 

low “sensory precision” estimates (encoded within 𝐀  in Figure 1)—prior beliefs will more 

strongly dominate perception and potentially promote false beliefs. 

The combination of socio-behavioral tasks and computational modeling can measure the 

precision of prior beliefs in perception at the individual level, providing one dimension of each 

participant’s computational phenotype. For examples of studies measuring individuals’ prior 

perceptual beliefs and sensory precision estimates in other content domains, see (Powers et al., 

2017; Smith, Kuplicki, Feinstein, et al., 2020; Smith, Kuplicki, Teed, et al., 2020; Smith, Mayeli, et 

al., 2021). To our knowledge, no study has measured prior beliefs or sensory precision estimates 
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in relation to measures of SWB in social decision tasks (for related theoretical work linking 

imprecise prior beliefs to racial discrimination, see (Varshney & Varshney, 2016)). This therefore 

represents one promising avenue for future research. 

 

4.2 Learning rates, forgetting, and volatility estimates 

A second important dimension of a computational phenotype describing the way individuals try 

to minimize VFE/EFE corresponds to learning rate. Learning rates were briefly introduced above 

in the context of RL models, where greater learning rates imply a belief that previously learned 

action-outcome probabilities are unstable over time (i.e., the environment is highly volatile). If 

volatility estimation processes function appropriately, these beliefs will reflect the true statistics 

of the environment, but individuals can also have inaccurate beliefs about volatility, which can 

lead to maladaptive learning rates. High learning rates promote forgetting previously learned 

reward probabilities in favor of patterns in more recent observations. Because learning reward 

probabilities is implemented differently in AI, there is an associated distinction between learning 

rates and forgetting rates. Learning rates in AI control how quickly beliefs “solidify” and become 

resistant to change, which has the effect of reducing exploratory behavior, while forgetting rates 

control how quickly new observations “over-write” previous learning (and are therefore more 

similar to learning rates in RL models). To be adaptive, both learning rates and forgetting rates 

need to match the true statistics of the environment. Otherwise, beliefs may either become 

rigid/overconfident or beliefs will be unstable/underconfident. Learning/forgetting rates also 

need not be the same for all types of observations. For example, in previous studies on substance 

use disorders using active inference models, healthy participants were found to selectively show 

faster learning rates for losses than substance users, which also predicted changes in symptom 

severity over time (Smith, Schwartenbeck, et al., 2020; Smith, Taylor, Stewart, et al., 2021). In 

addition to different learning/forgetting rates for different observations, some related models also 

assume individuals maintain explicit beliefs about volatility and update those beliefs over time 

(Mathys et al., 2014)—allowing for changes in the rate of learning/forgetting after each 

observation. 

When considering plausible mechanisms linked to greater SWB, one useful phenotype could 

correspond to a combination of optimistic prior beliefs and slow forgetting rates (assuming this 

also matches the statistics of the environment they occupy). This would entail that an individual’s 

optimistic expectations would be resilient to many negative experiences before having strong 

negative effects on perception and behavior. Another useful phenotype might involve a 

moderately fast forgetting rate in contexts where one is transitioning from socially hostile to 

friendly environments—which might prevent pre-existing pessimistic prior beliefs from 

promoting behavior that could prevent garnering social support. 

 

4.3 Information-seeking and sensitivity to uncertainty 

A third relevant aspect of how individuals seek to minimize EFE is through a type of curiosity or 

exploratory drive—captured by the epistemic value term described in the previous section. One 

consequence of the equation for EFE is that the value of the expected reward term controls how 

driven an individual is to seek information vs. reward (Schwartenbeck et al., 2019; Smith, Friston, 

et al., 2022). Technically, the expected reward term in EFE takes the form of a probability 
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distribution over observations, where observations that are more “probable” are those that are 

more rewarding (encoded by the parameters within 𝐂  in Figure 1). If this “preference 

distribution” is highly precise (corresponding to one observation having a very high reward 

value), then reward-seeking will dominate—leading to a type of “risky” behavior in which 

individuals try to maximize reward before exploring the environment to identify the optimal 

strategy. Conversely, a very imprecise preference distribution drives a type of “risk-averse” 

behavior in which individuals engage in excessive information-seeking (i.e., continually trying to 

reduce uncertainty beyond what is necessary) and take too long to become confident in the best 

reward-maximizing strategy. In other words, they act as though they are overly concerned that 

they will make the wrong decision once they begin seeking reward. Empirical studies in AI have 

only very recently begun to examine differences in preference precision (and hence information-

seeking; see (Smith, Schwartenbeck, et al., 2020; Smith, Taylor, Stewart, et al., 2021)). However, 

work on exploratory drives within expanded RL models has suggested altered patterns of 

information-seeking in depression, anxiety, and other psychiatric disorders (Aberg et al., 2022; 

Fan et al., 2021; Smith, Taylor, Wilson, et al., 2021; Waltz et al., 2020). Whether and how 

information-seeking drives relate to SWB has not been empirically assessed (for some interesting 

recent theoretical discussion, see (Miller et al., 2022)). Here, one might hypothesize that SWB 

would be facilitated by a moderate information-seeking drive that supports informed goal-

seeking, while preventing individuals from “jumping to conclusions” too early or remaining 

uncertain after gathering sufficient information. 

 

4.4 Prior beliefs about EFE precision 

As described earlier, AI suggests the brain can learn to be more or less confident in its model’s 

ability to use EFE to optimize action (the parameter 𝜸 in Figure 1). In these models, individuals 

also start with a prior belief about this EFE precision (the parameter 𝜷 in Figure 1), which can be 

estimated in individuals based on task behavior. This can be viewed as a type of metacognition, 

in that it involves inferring beliefs about the reliability of one’s beliefs (Hesp et al., 2021). One 

study has shown how this relates to dopamine-related brain regions during neuroimaging 

(Schwartenbeck et al., 2015), and two other studies have linked this measure to differences in self-

reported negative affect and decision uncertainty (Smith, Kirlic, Stewart, Touthang, Kuplicki, 

Khalsa, et al., 2021; Smith, Kirlic, Stewart, Touthang, Kuplicki, McDermott, et al., 2021). Therefore, 

one might predict that a stronger prior belief that EFE precision is high should be a mechanism 

promoting SWB. High EFE precision also leads behavior to be less random and/or less habit-

driven (i.e., it down-weights the influence of the habits encoded in the E vector in Figure 1)—

making behavior more driven by explicit future predictions, which could help account for 

bidirectional links between SWB and adaptive behavior (Diener et al., 2018). As EFE precision can 

be understood as a metacognitive belief and has been related to self-reported decision 

uncertainty, it also has potential links to other work suggesting the importance of metacognitive 

abilities in promoting SWB (Varshney & Barbey, 2021). 

 

4.5 Planning horizon and decision tree pruning 

A further possible dimension of a computational phenotype pertains to prospective planning. 

This form of planning involves imagining different sequences of actions (policies; encoded by 𝜋 
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in Figure 1) and their future outcomes (𝑜). One individual difference in this context is planning 

horizon, which corresponds to how many steps into the future one considers while making 

decisions (i.e., the length of the action sequence encoded in each possible policy). If this horizon 

is short, decisions will focus on optimizing short-term outcomes, while a long horizon will 

optimize long-term outcomes (e.g., even if they require enduring a negative short-term outcome). 

Another important individual difference corresponds to something called “decision tree 

pruning” (Huys et al., 2012; Lally et al., 2017), which arises from the fact that it typically takes too 

much time to imagine the distal future outcomes of all possible plans (i.e., policies). Therefore, a 

mechanism for focusing on only a few possible plans is needed (metaphorically “pruning away” 

other branches in a tree of possible diverging paths). This mechanism involves ceasing to 

simulate/imagine the rest of a possible action sequence once short-term negative outcomes are 

expected (i.e., one does not “think it through” to consider the possibility of a positive long-term 

outcome). These two differences—planning horizon and pruning—also represent plausible 

mechanisms for promoting behaviors that would maintain high vs. low SWB. Both a short 

planning horizon and too much pruning will lead to myopic planning. For example, this type of 

planning might prevent an individual from beginning a promising career trajectory because the 

initial starting position is not enjoyable or respected. Or it could prevent an individual from 

offering a difficult apology to maintain a fulfilling friendship. Yet, too little pruning is also 

maladaptive, as decision-making can become inefficient and overwhelming. It is also ideal for 

planning horizon to be flexible, as distal future outcomes can in some cases be too unpredictable 

to consider. In other cases, survival can also require fast decisions focused on the immediate 

future. Thus, one would expect individuals would have higher SWB if they are capable of long 

planning horizons, but where deployment of this ability is flexible and optimized to the relevant 

context. Behavioral planning tasks are available that could be used to examine potential relations 

between these mechanisms and SWB (Huys et al., 2012; Lally et al., 2017), but this remains 

untested. 

 

4.6 Granular state spaces 

The final element of a generative model that we will consider as a potential dimension for 

computational phenotyping pertains to the specificity of categories used to understand the world 

(i.e., technically, the number of possible states within the state-space of a model; encoded within 

𝑠 in Figure 1). Unlike some other model elements discussed above, this is not a single parameter. 

Instead, it is a more general attribute of the structure of a generative model. One relevant example 

of this pertains to the specificity of emotion concept learning, and its relation to constructs such 

as emotion differentiation (Kashdan et al., 2015), emotional complexity/diversity (Kang & Shaver, 

2004; Quoidbach et al., 2014), emotional awareness (Lane & Smith, 2021; Lane et al., 2015; Smith, 

Killgore, & Lane, 2018), and alexithymia (Bagby et al., 1994; Lane et al., 2021; Maroti et al., 2018; 

Trevisan et al., 2019), all of which share the notion of granularity. Individuals with low emotional 

granularity tend to use broad, non-specific emotion categories (e.g., “good”, “bad”). This can be 

understood as a generative model with only two possible states or hypotheses (Smith, Lane, et 

al., 2019; Smith, Parr, et al., 2019), which constrains the amount of information available to guide 

adaptive choice. In contrast, those with high granularity have many specific emotion concepts 

(e.g., many types of “bad”, such as sad, angry, afraid, guilty, jealous, etc.). This corresponds to a 



Subjective wellbeing and active inference 

Smith et al. 

 

      www.internationaljournalofwellbeing.org                   116 

generative model with a large number of possible states that can explain many unique patterns 

of sensory input and provide precise information to guide effective emotion regulation and 

adaptive social decision-making (Satpute et al., 2020; Satpute et al., 2016; Smith, Killgore, Alkozei, 

et al., 2018; Smith, Killgore, & Lane, 2018; Smith & Lane, 2016).  

This computational formulation of emotion concept granularity may therefore offer a novel 

perspective on the beneficial role of emotion knowledge in cognition. For example, it illustrates 

how a larger and more fine-grained state space for emotion concepts can offer precise predictions 

to adaptively guide choice. This could also be extended to consideration of unique emotion 

concepts present in different languages/cultures (Majid, 2012; Russell, 1991; Satpute et al., 2020), 

and how such concepts could be uniquely helpful in navigating those specific sociocultural 

contexts. This also supports previous suggestions that adaptive emotional functioning could be 

increased by acquiring new emotion concepts from other languages/cultures (Barrett, 2017). 

However, as with other model parameters, more granularity will likely only be useful to the 

extent that the environment truly has many underlying states. For example, if one grows up in 

an emotionally impoverished environment where people only express coarse-grained emotional 

signals, then it may be most adaptive to maintain a model that is not overly complex and assumes 

there is more variation than is actually present (Smith, Steklis, et al., 2022; Smith, Steklis, et al., 

2020). While simulations of such differences have been reported using AI (Smith, Lane, et al., 

2019; Smith, Parr, et al., 2019), no behavioral tasks have yet been developed to study the 

granularity of individuals’ generative models. This represents an important future direction, 

which could potentially draw on existing paradigms used to study cross-cultural differences in 

other perceptual categorization processes (e.g., color categorization (Twomey et al., 2021; 

Winawer et al., 2007)). It is also important to note that, while we have used emotion concept 

specificity as a concrete example, the notion of state-space granularity can be applied to many 

other relevant domains (e.g., coarse- vs. fine-grained beliefs about personality types, differences 

in social status, etc.), which will be important to consider in future work as well. 

 

5. Potential empirical applications 

As each of the model elements discussed above can differ across individuals, they afford possible 

explanations for individual differences in perception, learning, and decision-making—each of 

which could lead to differences in SWB. By extension, these model elements also offer possible 

explanations for cultural differences, which can be viewed as computational phenotypes that are 

similar in individuals within a culture but differ from individuals in other cultures. For example, 

perhaps some cultures place more value than others on reflective practices (e.g., heightened 

attention to one’s own uncertainty, more frequent engagement in prospection/retrospection) that 

would be expected to increase information-seeking and planning horizon (e.g., see (Fan et al., 

2021; Gershman, 2018; Jackson et al., 2020; Kaplan & Friston, 2018; Smith, Taylor, Wilson, et al., 

2022)). Or perhaps some cultures tend to share implicit expectations that the social environment 

is more volatile than others. SWB could also have unique computational correlates in different 

cultures.  Such hypotheses could be tested using standard methods in computational psychiatry 

to examine significant differences between cultural groups as well as the correlates of within-

culture variability (for a summary of possible empirical approaches, see Table 2 below). For 

example, if groups of individuals from two distinct cultures were each asked to complete widely-
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used decision tasks designed to test for differences in information-seeking/preference precision 

(e.g., (Smith, Schwartenbeck, et al., 2020; Wilson et al., 2014), distal planning (e.g., (Huys et al., 

2012)), or volatility beliefs (e.g., (de Berker et al., 2016; Diaconescu et al., 2017; Iglesias et al., 2013; 

Lawson et al., 2017)), hypotheses could be tested that significant group differences in these traits 

would be observed. Within each cultural group, possible relationships could also be tested 

between these traits and SWB. For example, perhaps volatility beliefs are correlated with SWB in 

some cultures but not in others.  

 

Table 2. Possible empirical approaches for measurement of, and intervention on, different 

computational model parameters. 

Model parameter Example experimental 
paradigms that could be 
adapted to estimate 
parameters in contexts 
relevant to subjective 
wellbeing 

Possible intervention 
approaches 

Target outcomes of 
interventions 

Precision of prior beliefs 
over states (D and B) 
and sensory precision 
(A) 

Conditioned perception 
tasks (Powers et al., 2017), 
interoceptive inference 
tasks (Smith, Kuplicki, 
Feinstein, et al., 2020; 
Smith, Kuplicki, Teed, et 
al., 2020; Smith, Mayeli, et 
al., 2021)  

Training based on 
corrective feedback, 
mindfulness, and/or 
selective attention 
(Feinstein et al., 2018; 
Price et al., 2019; 
Sugawara et al., 2020; 
Weng et al., 2021) 

A more positive 
outlook on life due to 
more optimistic prior 
beliefs  

Learning/forgetting 
rates & volatility 
estimates 

Perceptual learning tasks 
(Smith, Mayeli, et al., 
2021), multi-arm bandit 
tasks (Smith, 
Schwartenbeck, et al., 
2020; Smith, Taylor, 
Stewart, et al., 2021), 
reversal learning and 
change-point detecting 
tasks (Browning et al., 
2015; de Berker et al., 
2016; Diaconescu et al., 
2017; Huang et al., 2017; 
Iglesias et al., 2013) 

Corrective feedback or 
directed attention-
based training (no 
existing interventions) 

Reduced levels of 
anxiety due to the 
belief that the world 
is more predictable 

Preference precision (C): 
Reward-seeking vs. 
information-seeking 

Explore-exploit and 
multi-arm bandit tasks 
(Fan et al., 2021; Smith, 
Schwartenbeck, et al., 
2020; Smith, Taylor, 
Stewart, et al., 2021; 
Wilson et al., 2014) 

Increasing awareness 
of uncertainty 
(cognitive and 
behavioral therapeutic 
interventions; (Barlow 
et al., 2016; Segal et al., 
2004)), altering 
incentive structure 
(Ederer & Manso, 
2013) 

Reduced avoidance 
behavior, 
impulsivity, and/or 
uncertainty due to 
optimizing the 
balance between 
reward-seeking and 
information-seeking 
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Model parameter Example experimental 
paradigms that could be 
adapted to estimate 
parameters in contexts 
relevant to subjective 
wellbeing 

Possible intervention 
approaches 

Target outcomes of 
interventions 

Expected free energy 
precision (𝛾) 

Limited offer (risk-taking) 
task (Schwartenbeck et al., 
2015), approach-
avoidance conflict task 
(Smith, Kirlic, Stewart, 
Touthang, Kuplicki, 
Khalsa, et al., 2021; Smith, 
Kirlic, Stewart, Touthang, 
Kuplicki, McDermott, et 
al., 2021) 

Interventions targeting 
self-efficacy, 
confidence, self-
determination, etc. 

More confident, 
value-sensitive 
behaviors with less 
influence of 
unhealthy habits 

Planning horizon and 
decision-tree pruning 

Multi-step planning tasks 
(Huys et al., 2012) 

Increasing awareness 
of the importance of 
cognitive reflection 
and prospective 
planning (cognitive 
and behavioral 
therapeutic 
interventions; (Barlow 
et al., 2016; Segal et al., 
2004)), enforcing delay 
periods before choice 
(Bernstein et al., 2018; 
Shin & Grant, 2021) 

A greater ability to 
work toward healthy 
long-term goals, 
despite needing to go 
through short-term 
challenges and 
discomfort 

State-space granularity 
(𝑠) 

No existing paradigms. 
Would require 
comparison of models 
with different numbers of 
hidden states in the 
context of an emotion 
inference task 

Emotional awareness 
training interventions 
(Burger et al., 2016; 
Farnam et al., 2014; 
Neumann et al., 2017; 
Persich et al., 2021; 
Thakur et al., 2017), 
promoting 
identification of 
alternative 
interpretations 
(Barlow et al., 2016; 
Hendricks et al., 2018) 

A more precise 
understanding of 
emotions, which is 
expected to improve 
emotion regulation 
and social decision-
making 

 

A further consideration is that, because cultural norms and practices are passed on through 

learning, computational models of learning in both RL and AI can offer hypotheses about this 

learning process. However, unlike the generic model parameters discussed above, cultural norms 

and values are content-specific (e.g., that it is acceptable or unacceptable to strive for personal 

over collective benefit). As such, the approach to testing such hypotheses would instead require 

model comparison (Rigoux et al., 2014). This entails specifying a number of different mechanistic 
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hypotheses—formalized as different generative models—that could explain such differences. For 

example, one candidate model might specify that people within collectivistic cultures learn a 

generative model in which self-serving choices are expected to generate non-preferred social 

feedback, which then deters the selection of those behaviors. In contrast, another candidate 

generative model might specify that individuals learn preferences for observing prosocial 

behavior in both themselves and others. In this latter case, behavior would not be driven by 

expected social feedback, but by the intrinsic desire to observe prosocial behavior. A more 

complex model might include a competition between the precision of preferences for personal 

and societal benefit, with a parameter that weights their relative influence. Once a space of 

possible models is constructed, each model can be fit to available data. One can then perform 

model comparison to identify which model best accounts for the way this cultural difference is 

acquired (i.e., which model can best reproduce the experimental data in simulations). 

The approaches described in this section can also be applied to many other related 

phenomena. For example, people in individualistic cultures tend to prefer high-arousal emotions 

more than those in collectivistic cultures (Lim, 2016). Within AI models there are several possible 

mechanisms through which these distinct value systems could be acquired during development, 

each representing a unique hypothesis to be tested. For example, this might involve learning 

distinct preference distributions (i.e., within 𝐂 in Figure 1) over high arousal sensations based on 

what was experienced most frequently during development, or it could involve associative 

learning processes (within 𝐀 in Figure 1) in which an individual has learned to predict that 

displays of high-arousal emotions will be met with non-preferred outcomes (e.g., negative social 

feedback). Or perhaps individuals in collectivistic cultures learn to expect that high-arousal states 

threaten the successful minimization of VFE and EFE (i.e., that action outcomes are less 

predictable and that the value of 𝜸 in Figure 1 is low).  

Another hypothesis is that emotions are conceptualized in distinct ways in different cultures, 

and that it is this difference in conceptualization that explains differences in emotional 

experience. In other words, different cultures have different emotion categories that can be 

inferred to explain their experience, which would be encoded within 𝑠 in Figure 1). This type of 

emotion concept inference process has been simulated in previous work, but cross-cultural 

variation has not been addressed (Smith, Lane, et al., 2019; Smith, Parr, et al., 2019). Emotion 

concept learning in this context can be modeled as learning the probability of making various 

internal and external observations under different emotional states, 𝑝(𝑜|𝑠) . For example, 

observations of threat, high arousal, and avoidance motivation may have high joint probability 

under the concept of “fear”, while observations of pleasant sensations, high arousal, and 

approach motivations may have high joint probability under the concept of “excitement”. 

However, these probabilistic mappings are learned and can differ by culture (Barrett, 2017; 

Russell, 1991; Smith, Killgore, & Lane, 2018; Widen & Russell, 2008), which means the same 

experiences can be interpreted as different emotions in different cultures. In computational terms, 

this would mean that different cultures have different numbers/types of possible states (i.e., 

different levels of granularity) and different emotional state-observation mappings encoded in 

their internal models.  

In support of this, different languages often include emotion concept terms that are difficult 

to translate. For example, the concept of “wabi-sabi” in Japanese roughly corresponds to 



Subjective wellbeing and active inference 

Smith et al. 

 

      www.internationaljournalofwellbeing.org                   120 

“appreciating beauty in imperfection” and the concept of “schadenfreude” in German 

corresponds to “feeling pleasure in response to another person’s suffering or misfortune”. These 

concepts do not have 1-to-1 translations to English words. The degree to which this influences 

emotional experience is an open question, but both active inference and related theories of 

emotion (e.g., constructivism; (Barrett, 2017)) would predict meaningful influences. As in the 

previous cases we have described, this could also be tested through model comparison. For 

example, emotion induction procedures could be combined with behavioral tasks that require 

decisions to be made based on perceived emotional states. Then models with different 

numbers/types of emotion concepts could be compared in their ability to account for differences 

in self-reported emotions and patterns of choice behavior. If different models best explained 

behavior in different cultural groups, this would support the idea that they use different models 

as a means of understanding their emotional experience (i.e., different inferences best minimize 

variational free energy and make different predictions about the choices that will minimize 

expected free energy). 

One additional area of research on SWB that could be opened up using computational 

approaches is modeling multi-person interactions. In this case, two (or more) individuals 

cooperate or compete when completing a behavioral task—allowing models to be fit to the 

behavior of each individual as they react to each other’s choices. This can offer the opportunity 

to evaluate individual differences in parameters of one individual’s model of another person (i.e., 

corresponding to the neurocomputational processes underlying mentalization or theory of mind 

(Amodio & Frith, 2006; Friston & Frith, 2015; Frith & Frith, 2006, 2012; Lombardo et al., 2010; 

Schurz et al., 2014)). To date, a small number of studies have begun to examine how individuals 

minimize “social prediction error” in such tasks (Diaconescu et al., 2014; Diaconescu et al., 2017), 

illustrating sensitivity to beliefs about volatility in the intentions of others, relationships to self-

reported empathy, and the potential role of specific neuromodulatory systems, but this work has 

not focused on individual differences in SWB. Complementary work within the RL framework 

has also shown that happiness ratings are lower in such tasks when interaction partners are 

inequitably rewarded (Rutledge et al., 2016), but has not focused on inference processes within 

internal models of others or the potential role of free energy minimization. Future research could 

build upon this work by using such tasks in combination with AI models to examine additional 

hypotheses. For example, perhaps individuals with precise prior beliefs that others tend to be 

altruistic (and therefore behave in more cooperative, trusting ways) will also be more likely to 

report higher SWB. Or perhaps individuals that more fully consider the predicted effect of their 

current choices on the distal future choices of their interaction partner (i.e., greater planning 

horizon) will also report greater real-world social success (e.g., attainment of greater social 

support, more meaningful relationships, etc.).  

Another complementary research direction could be to use multi-agent simulation to identify 

public policies that better promote SWB in societies of a given culture (e.g., by formalizing multi-

agent interactions in which one agent corresponds to the government and has a particular set of 

“policy-making” actions to choose from). A branch of game theory called mechanism design, which 

can be thought of as the “engineering” side of economic theory, is one appropriate mathematical 

approach for identifying policies in this manner (Maskin, 2008). Based on the present discussion, 

future work might consider mechanism design using agents that are themselves engaged in active 
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inference (e.g., within a general equilibrium macroeconomic model that is being utilized to 

understand a country’s SWB (Hill et al., 2021)). Parallel work in the RL literature has developed 

similar large-scale simulations to develop dynamic taxation and subsidy policies that consider 

multiple objectives, policy levers, and behavioral responses from strategic actors that optimize 

for their individual objectives (Trott et al., 2021). A taxation policy from such reinforcement 

learning simulations can even outperform optimal static policies in terms of productivity and 

equity (Zheng et al., 2021). Thus, it would be interesting to see whether the active inference 

framework could offer any additional benefits in this line of research. 

 

6. Summary and conclusion: Integrated phenotypes for free energy minimization 

We have outlined several computational model parameters that can be configured in unique 

ways in different individuals—representing distinct computational strategies one might use in 

attempt to minimize free energy. We have also considered how each of these parameters could 

(alone or in combination) either promote or hinder maintenance of high SWB depending on the 

values they take and their match to the statistics of the local environment. Figure 2 (below) 

provides a visual summary of these parameters and their interactions. 

These parameters may link to SWB in at least two ways. First, parameters like EFE precision 

(and perhaps prior beliefs about states) may have close internal connections with feelings of 

wellbeing. Second, many other parameters may contribute to wellbeing indirectly through their 

influence on behavior. That is, if they match well with the local environment, behavior may be 

more likely to cultivate the career success and social support that contribute to satisfaction with 

life. 

We suggest that the reconceptualization of SWB we have described in terms of levels of 

success in free energy minimization, and the methods offered by computational modeling to 

empirically test this new framing, each represent important means of advancing our 

understanding of SWB. It may offer a novel behavioral approach and set of tools/measures that—

while potentially showing convergent validity with standard SWB measures—can also offer 

novel types of relevant information. It may help to identify specific mechanisms that promote or 

hinder wellbeing on an individual basis and therefore potentially facilitate the development of 

personalized interventions aimed at improving wellbeing. We look forward to seeing the 

potentially important outcomes of this line of future research. 
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Figure 2. Computational framework for subjective wellbeing. 

 
Notes. Left: Summary of example parameters and how they could plausibly influence SWB. See main text 

for further description. Right: Depiction of the circular interactions between perception and action, as well 

as where the parameters discussed in the text influence learning and decision-making processes 

contributing to these circular interactions. Specific parameters are highlighted in red font. 
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